
This article was downloaded by: On: *26 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

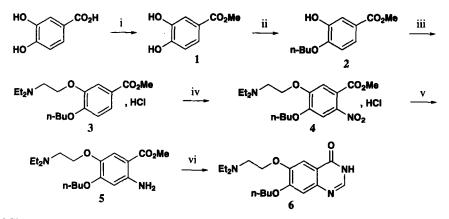
To cite this Article Desroses, Matthieu , Laconde, Guillaume , Depreux, Patrick and Hénichart, Jean-Pierre(2004) 'SYNTHESIS OF UNSYMMETRICAL DIALKOXY QUINAZOLINES', Organic Preparations and Procedures International, 36: 5, 445 – 452

To link to this Article: DOI: 10.1080/00304940409356628 URL: http://dx.doi.org/10.1080/00304940409356628

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.


The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

SYNTHESIS OF UNSYMMETRICAL DIALKOXY QUINAZOLINES

Matthieu Desroses, Guillaume Laconde, Patrick Depreux* and Jean-Pierre Hénichart

Institut de Chimie Pharmaceutique Albert Lespagnol 3, rue du Professeur Laguesse, B.P. 83, 59006 Lille, FRANCE Fax: +33 (0)3 20 96 49 06 ; E-mail: pdepreux@phare.univ-lille2.fr

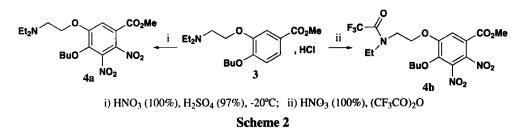
Quinazoline-derived compounds are gaining greater importance and wider use, mainly as the result of their applications in medicinal chemistry. For example, several quinazolines derivatives have been examined as inhibitors of a variety of transmembrane growth factor receptors,^{1.2} or as inhibitors of farnesyl protein transferase,³ in order to find some new method for the treatment of human cancer. They have also been developed as inhibitors of NF- κ B activation⁴ as a potential method for treating inflammatory diseases. Although this class of compounds is widely exploited, only few derivatives bear different ether side-chains at the 6- and 7-positions of the quinazoline ring. Furthermore, to our knowledge, different ethers of the phenolic groups of catechols⁵ and more specifically of dihydroxyquinazolines derivatives are not well documented. Herein, we present an efficient route to quinazolines bearing different substituents, such as *n*butoxy- and diethylaminoethoxy- groups at the 6- and 7-positions of the quinazoline ring (Scheme 1).

i) SOCl₂, MeOH, reflux; ii) K₂CO₃, *n*-C₄H₉I, acetone; iii) K₂CO₃, Et₂N(H₂C)₂Cl•HCl, acetone, reflux; iv) HNO₃ (100%), SnCl₄, CH₂Cl₂, -25°C; v) SnCl₂, conc. HCl, 100°C; vi) HCOONH₄, HCONH₂, 140°C

Scheme 1

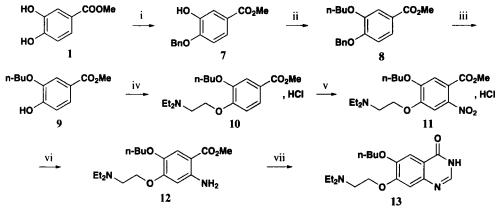
^{© 2004} by Organic Preparations and Procedures Inc.

Commercially available 3,4-dihydroxybenzoïc acid was converted to its methyl ester 1 in quantitative yield.⁶ Various procedures for the Williamson's reaction were then investigated to monoalkylate the hydroxy group of 1 *para* to the ester. Attempt using a solid-liquid phase-transfer system with polyethylene glycol (PEG) as phase-transfer agent, in dioxane under reflux and NaHCO₃ (one eq.) as the base⁷ was unsuccessful. Alternatives procedures were then investigated.


It was first decided to have available reference samples of the mono- and dibutylated products. This reaction was performed in refluxing acetone with an excess of K_2CO_3 and 1-iodobutane. Compound 2 and the *bis*-ether were thus obtained in 33% and 51% yield respectively. Attempts to monobutylate at the *para* hydroxy group of the ester group were then investigated. In none of these cases was the *bis*-ether isolated (*Table 1*). The best yield of 2 was

Method	Yield (%)	Base (equiv.)	Time (hrs)	Temp. (°C)	Solvent	n-Bul (equiv)
18	20	$K_2CO_3(1.0)$	18	Δ	acetone	1.0
28	16	NaHCO ₃ (1.0)	18	Δ	acetone	1.0
3 ⁹	42	NaH (0.9)	48	RT	DMF	0.9
4 ⁹	54	NaH (1.0)	48	RT	DMF	1.0
5 ⁸	40	K_2CO_3 (1.0)	18	RT	acetone	1.0
6 ⁹	40	NaH (0.9)	18	Δ	DMF	0.9

 Table 1. Preparation of Compound 2.


achieved by treatment of compound 1 with one eq. each of NaH and 1-iodobutane in DMF at room temperature for two days (*Table 1, Entry 4*). However, due to the easier procedure and work-up, selective introduction of *n*-butyl substituent was performed in 40% yield using one equivalent of 1-iodobutane and K_2CO_3 in acetone at room temperature over 18 h (*Table 1, Entry 5*). Alkylation of the free hydroxy group of 2 with 2-(diethylamino)ethyl chloride hydrochloride in K_2CO_3 in refluxing acetone, gave 3 in quantitative yield.

The nitration of **3** carried out in a fuming nitric and sulfuric acids mixture at -20° C, did not lead to desired compound **4** but rather to compound **4a** in only 5% yield. The bis-nitrated structure was confirmed by COSY and ROESY experiments. The main result of this reaction was a complex mixture of degradation products. It was therefore necessary to develop new approaches. Attempted selective nitrations with fuming nitric acid at room temperature in acetic acid or acetic anhydride¹⁰ were unsuccessful. Treatment of **3** with fuming nitric acid in trifluoroacetic anhydride¹¹ led to compound **4b** in 15% yield. The structure **4b** was established by NMR experiments; a ¹⁹F NMR (which suggested the presence of the fluorine atom), a ¹³C NMR (which showed the presence of N-CO-CF₃ group), and a HSQC and HMBC NMR (which confirmed the positions of the nitro groups). The formation of **4** was not expected, although this N-dealkylation trifluoroacetylation has been observed in previous studies.¹²

A third approach, using a Claycop reagent (mixture of montmorillonite and cupric nitrate) in the presence of acetic anhydride in methylene chloride at room temperature,¹³ led to a complex mixture from which the desired product was not isolated. Nitration of compound **3** in nitric acid (68%) at 0°C¹⁴ provided the desired intermediate **4** in 30% yield. This yield could be increased to 65%, using fuming nitric acid with tin(IV) chloride in methylene chloride at -25° C.¹⁵ The position of the nitro group was confirmed by COSY and ROESY experiments.

Amine 5 was obtained in 61% yield by reduction with iron powder in acetic acid during 1 h (*Method A*). The yield was improved to 66% yield in 30 minutes by using tin(II) chloride in conc. hydrochloric acid (*Method B*). The quinazoline 6 was then obtained in 66% yield, as described by Robba *et al.*,¹⁶ by treatment of compound 5 with ammonium formate in formamide at 140°C. In order to validate this strategy, we decided to employ the same synthetic route to acquire isomer 13 (*Scheme 3*). This synthesis was accomplished by first benzylation of 1 in

i) K_2CO_3 , BnBr, acetone; ii) K_2CO_3 , $n-C_4H_9I$, acetone, reflux; iii) H_2 , Pd/C, MeOH; iv) K_2CO_3 , Et_2N(CH_2)_2Cl+HCl, acetone, reflux; v) HNO₃ (100%), SnCl₄, CH₂Cl₂, -25°C; vi) SnCl₂, HCl, 100°C; vii) HCOONH₄, HCONH₂, 140°C Scheme 3

acetone at room temperature, using one equivalent of K_2CO_3 and benzyl bromide. The position of the benzyl group was confirmed by COSY and ROESY experiments. In the next step, the free phenol group of the intermediate 7 was alkylated with 1-iodobutane, using K_2CO_3 in refluxing acetone, to give 8 in 96% yield. After hydrogenolysis of the benzyl protective group in 94% yield, the free hydroxy group of compound 9 was alkylated with 2-(diethylamino)ethyl chloride hydrochloride using K_2CO_3 in refluxing acetone. Intermediate 10 was obtained in 91% yield. The quinazoline 13 was then prepared with a similar strategy used to afford 6. Nitration of compound 10 with fuming nitric acid with tin(IV) chloride in methylene chloride at -25°C, followed by the reduction of the nitro group using tin(II) chloride in conc. hydrochloric acid at 100°C, furnished 12 in 79% yield. This compound was cyclized to the quinazoline 13 using ammonium formate in formamide at 140°C with 60% yield.

EXPERIMENTAL SECTION

Mps were determined in open capillary tubes using a BÜCHI B-530 melting point apparatus and are uncorrected. Infrared spectra were obtained using a BRUKER VECTOR 22. ¹H NMR spectra were recorded using a BRUKER AC 300P spectrometer in DMSO-d₆ or in CDCl₃ at ambient temperature. Compound 1 was synthetised according to described procedure.⁶

Methyl 4-Butoxy-3-hydroxybenzoate (2).- To a solution of 1 (10g, 0.06 mol) in acetone (400 mL) was added K_2CO_3 (8.30 g, 0.06 mol). The mixture was stirred 15 min. and then a solution of 1-iodobutane (7 mL, 0.06 mol) in acetone (100 mL) was added slowly dropwise. The mixture was stirred 2 days at room temperature and filtered. The filtrate was concentrated *in vacuo* and the oily residue was washed with H₂O. The resulting precipitate was collected, washed successively with H₂O and petroleum ether, and dried *in vacuo*. Recrystallization from cyclohexane gave 8.62 g (64%) of white crystals, mp 113-115°C. IR: 3700-3000 (OH), 1699 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.99 (t, 3H, J = 7.40 Hz), 1.52 (m, 2H), 1.84 (m, 2H), 3.88 (s, 3H), 4.11 (t, 2H, J = 6.45 Hz), 5.70 (s, 1H), 6.88 (d, 1H, J = 9.10 Hz), 7.58-7.64 (m, 2H).

Anal. Calcd for C₁₂H₁₆O₄: C, 64.27; H, 7.19. Found: C, 63.99; H, 7.05

Methyl 4-Butoxy-3-(2-diethylaminoethoxy)benzoate Hydrochloride (3).- A mixture of 2 (5.47 g, 0.024 mol), K_2CO_3 (16.6 g, 0.122 mol) and 2-(diethylamino)ethyl chloride hydrochloride (8.6 g, 0.048 mol) in acetone (80 mL) was refluxed for 16 hrs. The inorganic solid was filtered off and the filtrate concentrated *in vacuo*. The oily residue was dissolved in diethyl ether (50 mL) and a solution of diethyl ether saturated with gaseous HCl was added (30 mL). The resulting precipitate was collected, washed with diethyl ether and dried *in vacuo* to afford **3** (8.78 g, 100%) as HCl salt (a white solid), mp 148.5-150°C. IR: 2588 and 2488 (NH), 1716 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.99 (t, 3H, J = 7.20 Hz), 1.42-1.54 (m, 8H), 1.83 (m, 2H), 3.33 (m, 4H), 3.53 (t, 2H, J = 4.60 Hz), 3.89 (s, 3H), 4.05 (t, 2H, J = 6.70 Hz), 4.53 (t, 2H, J = 4.60 Hz), 6.89 (d, 1H, J = 8.70 Hz), 7.55 (d, 1H, J = 2.00 Hz), 7.64 (dd, 1H, J = 8.70 and 2.00 Hz), 12.46 (s, 1H).

Anal. Calcd for $C_{18}H_{30}CINO_4$: C, 60.07; H, 8.40; N, 3.89. Found: C, 60.27; H, 8.43; N, 4.18

Methyl 4-Butoxy-5-(2-diethylaminoethoxy)-2-nitrobenzoate Hydrochloride (4).- To a solution of 3 (3 g, 0.0083 mol) in CH_2Cl_2 (111 mL) cooled at -25°C, was added dropwise a solution of $SnCl_4$ (2.7 mL, 0.025 mol) and fuming HNO₃ (1mL, 0.025 mol) in CH_2Cl_2 (30 mL). After stirring at -25°C for 5 hrs, water was added (75 mL). The layers were separated by decantation.

The aqueous layer was extracted with CH_2Cl_2 . The combined organic layers were washed with saturated NaHCO₃ solution, dried over MgSO₄ and concentrated *in vacuo*. The oily residue was dissolved in diethyl ether and a solution of diethyl ether saturated with gaseous HCl was added (30 mL). The resulting precipitate was collected, washed with diethyl ether and dried *in vacuo* to provide 4 (2.20g, 65%) as HCl salt (a white solid), mp 124.2-124.8°C. IR: 1728 (CO), 1520 (NO₂) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.99 (t, 3H, J = 7.57 Hz), 1.45 (m, 8H), 1.80 (m, 2H), 3.25 (m, 4H), 3.55 (m, 2H), 3.85 (s, 3H), 4.05 (t, 3H, J = 6.62 Hz), 4.62 (m, 2H), 7.10 (s, 1H), 7.38 (s, 1H). *Anal.* Calcd for C₁₈H₂₀ClN₂O₆: C, 53.40; H, 7.22; N, 6.92. Found: C, 53.51; H, 7.30; N, 6.62

Methyl 4-Butoxy-5-(2-diethylaminoethoxy)-2,3-dinitrobenzoate (4a).- To a mixture of fuming nitric (5.2 mL) and sulfuric (3.3 mL) acids at -20°C was added 3 (1 g, 0.0027 mol). After stirring at -20°C for 6 hrs, the reaction mixture was hydrolyzed by adding glacial H₂O. A solution of K_2CO_3 (5%) was added to obtain a pH ~8 and the mixture was extracted with ethyl acetate. The organic layer was washed with H₂O, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH 9.9/0.1) to provide 4a (0.06g, 5%) as a yellow oil. IR: 1740 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.99 (t, 3H, J = 7.40 Hz), 1.07 (t, 6H, J = 7.10 Hz), 1.43 (m, 2H), 1.71 (m, 2H), 2.64 (q, 4H, J = 7.10 Hz), 2.94 (m, 2H), 3.90 (s, 3H), 4.15-4.29 (m, 4H), 7.44 (s, 1H).

Anal. Calcd for C₁₀H₋₇N₃O₆: C, 52.29; H, 6.58; N, 10.16. Found: C, 52.50; H, 6.62; N, 9.86.

Methyl 4-Butoxy-5-{2-[ethyl-(2,2,2-trifluoroacetyl)-amino]-ethoxy}-2,3-dinitrobenzoate (4b).- A mixture of 3 (1 g, 0.0027 mol), fuming HNO₃ (0.6 mL, 0.0135 mol) in trifluoroacetic anhydride (20 mL) was stirred at room temperature for 18 hrs. The reaction mixture was hydrolyzed with glacial H₂O. A solution of K₂CO₃ (5%) was added to obtain a pH ~8 and the mixture was extracted with ethyl acetate. The organic layer was washed with H₂O, dried over MgSO₄ and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (CH₂Cl₂/MeOH 9.8/0.2) to afford 4b (0.20 g, 15%) as a white solid, mp 121.4-123.7°C. IR: 1721 (CO), 1682 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.90 (t, 3H, J = 7.40 Hz), 1.22 (t, 3H, J = 7.10 Hz), 1.35 (m, 2H), 1.60 (m, 2H), 3.08 (m, 2H), 3.47 (m, 2H), 3.90 (s, 3H), 4.21 (t, 2H, J = 6.60 Hz), 4.52 (m, 2H), 7.50 (s, 1H).

Anal. Calcd for C₁₈H₂₂F₃N₃O₉: C, 44.91; H, 4.61; N, 8.73. Found: C, 44.66; H, 4.62; N, 8.69 Methyl 2-Amino-4-butoxy-5-(2-diethylaminoethoxy)benzoate (5).

Method A.- To a suspension of 4 (1 g, 0.0025 mol) in acetic acid (30 mL) was added iron powder (1.51 g, 0.0025 mol) and conc. HCl (0.5 mL). The reaction mixture was refluxed for 1 h and filtered. The filtrate was concentrated *in vacuo* and the resulting residue was dissolved in acetone (30 mL). The suspension was filtered and the filtrate concentrated *in vacuo* to afford 5 (0.515 g, 61%) as an brown oil. IR: 3571 (NH₂), 1684 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.95 (t, 3H, J = 7.22 Hz), 1.12 (t, 6H, J = 7.22 Hz), 1.48 (m, 2H), 1.80 (m, 2H), 2.52 (q, 4H, J = 7.22 Hz), 2.85 (t, 2H, J = 6.24 Hz), 3.80 (s, 3H), 3.95 (m, 4H), 5.55 (s, 2H), 6.10 (s, 1H), 7.32 (s, 1H). *Anal.* Calcd for C₁₈H₃₀N₂O₄: C, 63.88; H, 8.93; N, 8.28. Found: C, 63.75; H, 9.05; N, 8.35

Method B.- A suspension of 4 (1 g, 0.0025 mol) in conc. HCl (25 mL) was heated at 50-60°C for 5 minutes. A solution of $SnCl_2$ (2.33 g, 0.015 mol) in conc. HCl (20 mL) was added dropwise. The reaction mixture was heated at 100°C for 45 minutes. The solid formed was collected and dissolved in H₂O (300 mL). A solution of sodium hydroxide (2 N) was added to obtain a pH ~8-9. The aqueous solution was then extracted with ethyl acetate (3 x 100 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* to give **5** (0.78 g, 91%) as a brown oil. Its NMR spectrum is identical to that obtained with method A.

7-Butoxy-6-(2-diethylaminoethoxy)-3H-quinazolin-4-one (6).- A mixture of **5** (1 g, 0.003 mol), HCOONH₄ (0.9 g, 0.009 mol) and HCONH₂ (1 mL, 0.015 mol) was heated at 140°C for 16 hrs. The mixture reaction was hydrolyzed (50 mL) and extracted with CH_2Cl_2 . The separated aqueous layer was neutralized with a saturated K₂CO₃ solution. The resulting precipitate was collected to afford **6** (0.66 g, 66%) as a white solid, mp 201.8-202.2°C. IR: 1659 (CO), 1611 (NH) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.99 (t, 3H, J = 7.22 Hz), 1.10 (t, 6H, J = 7.22 Hz), 1.52 (m, 2H), 1.92 (m, 2H), 2.68 (q, 4H, J = 7.22 Hz), 2.98 (t, 2H, J = 5.58 Hz), 4.10 (m, 2H), 4.20 (m, 2H), 7.10 (s, 1H), 7.55 (s, 1H), 7.98 (s, 1H).

Anal. Calcd for C₁₈H₋₇N₃O₃: C, 64.84; H, 8.16; N, 12.60. Found: C, 65.10; H, 7.98; N, 12.48

Methyl 4-Benzyloxy-3-hydroxybenzoate (7).- As described for 2, recrystallization from diisopropyl ether gave intermediate 7 as a pale yellow solid (10.42 g, 67%), from 1 (10 g, 0.06 mol) in acetone (400 mL), K_2CO_3 (8.30 g, 0.06 mol) and a solution of benzyl bromide (7 mL, 0.06 mol) in acetone (100 mL); mp 127.6-129°C. IR: 3392 (OH), 1693 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 3.89 (s, 3H), 5.18 (s, 2H), 5.70 (s, 1H), 6.96 (d, 1H, J = 8.20 Hz), 7.38-7.47 (m, 5H), 7.58-7.64 (m, 2H).

Anal. Calcd for C₁₅H₁₄O₄: C, 69.76; H, 5.46. Found: C, 69.90; H, 5.52

Methyl 4-Benzyloxy-3-butoxybenzoate (8).- To a solution of 7 (1 g, 0.0039 mol) in acetone (50 mL) was added K_2CO_3 (1.10 g, 0.0078 mol). The mixture was stirred 10 min. and 1-iodobutane (0.91 mL, 0.0078 mol) was added. The reaction mixture was refluxed for 5 hrs. The inorganic solid was filtered off and the filtrate was concentrated *in vacuo*. The resulting solid residue was washed successively with H_2O and petroleum ether. Recrystallization from ethanol-water (95/5) gave 1.18 g (96%) of white crystals, mp 54.7-55.8°C. IR: 1716 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 1.01 (t, 3H, J = 7.75 Hz), 1.55 (m, 2H), 1.86 (m, 2H), 3.89 (s, 3H), 4.09 (t, 2H, J = 6.70 Hz), 5.20 (s, 2H), 6.92 (d, 1H, J = 8.30 Hz), 7.27-7.48 (m, 5H), 7.56-7.65 (m, 2H).

Anal. Calcd for C₁₀H₂₂O₄: C, 72.59; H, 7.05. Found: C, 72.89; H, 7.10

Methyl 3-Butoxy-4-hydroxybenzoate (9).- To a solution of 8 (1 g, 0.0032 mol) in methanol (50 mL) was added Pd/C (0.2 g). The reaction mixture was stirred under hydrogen atmosphere at room temperature for 2 days, filtered, and evaporated *in vacuo*. The oily residue was treated with petroleum ether and the resulting precipitate was collected. Recrystallization from petroleum ether gave 0.67 g (94%) of white crystals, mp 61-62.2°C. IR: 3405 (OH), 1701 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.99 (t, 3H, J = 7.30 Hz), 1.50 (m, 2H), 1.82 (m, 2H), 3.88 (s, 3H), 4.10 (t, 2H, 3H) and the complexity of the c

J = 6.85 Hz), 5.70 (s, 1H), 6.93 (d, 1H, J = 8.30 Hz), 7.54 (s, 1H), 7.62 (d, 1H, J = 8.30 Hz). Anal. Calcd for $C_{12}H_{16}O_4$: C, 64.27; H, 7.19. Found: C, 64.46; H, 7.23

Methyl 3-Butoxy-4-(2-diethylaminoethoxy)benzoate Hydrochloride (10).- Starting from 9 (2 g, 0.009 mol), compound 10 was synthesized using the same procedure as that for 3. Recrystallization from toluene gave 2.55 g (91%) of white crystals, mp 116-118°C. IR: 2608 and 1483 (NH⁺), 1717 (CO) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.98 (t, 3H, J = 7.35 Hz), 1.38-1.60 (m, 8H), 1.77 (m, 2H), 3.30 (m, 4H), 3.53 (m, 2H), 3.89 (s, 3H), 4.02 (m, 2H), 4.57 (t, 2H, J = 4.20Hz), 6.89 (d, 1H, J = 8.35 Hz), 7.53 (d, 1H, J = 2.00 Hz), 7.63 (dd, 1H, J = 8.35 and 2.00 Hz), 12.44 (s, 1H). Anal. Calcd for C₁₈H₃₀ClNO₄: C, 60.07; H, 8.40; N, 3.89. Found: C, 60.30; H, 8.49; N, 4.05

Methyl 5-Butoxy-4-(2-diethylaminoethoxy)-2-nitrobenzoate Hydrochloride (11).- Starting from 10 (5 g, 0.014 mol), compound 11 was obtained using the same procedure as that for 4. 3.8 g (67%) of a white solid were prepared, mp 119-120°C. IR: 1734 (CO), 1530 (NO₂) cm⁻¹. ¹H NMR: (CDCl₃): δ 1.00 (t, 3H, J = 7.30 Hz), 1.50 (m, 8H), 1.80 (m, 2H), 3.30 (q, 4H, J = 7.23 Hz), 3.60 (t, 2H, 6.24 Hz), 3.80 (s, 3H), 4.10 (t, 2H, J = 6.30 Hz), 4.60 (t, 2H, J = 6.24 Hz), 6.80 (s, 1H), 7.40 (s, 1H), 12.50 (m, 1H).

Anal. Calcd for C₁₈H₂₉ClN₂O₆: C, 53.40; H, 7.22; N, 6.92. Found: C, 53.57; H, 7.34; N, 7.09

Methyl 2-Amino-5-butoxy-4-(2-diethylaminoethoxy)benzoate (12).- As described for **5**, intermediate **12** was obtained as an oil (0.33 g, 79%), from **11** (0.50 g, 0.0012 mol) and tin(II) chloride (0.93 g, 0.006 mol) in conc. HCl (23 mL). IR: 3480 and 3385 (NH₂), 1685 (CO), 1624 (NH₂) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.91 (t, 3H, J = 7.20 Hz), 1.01 (t, 6H, J = 7.20 Hz), 1.40 (m, 2H), 1.68 (m, 2H), 2.58 (m, 4H), 2.88 (t, 2H, J = 6.26 Hz), 3.85 (s, 3H), 3.88 (t, 2H, J = 6.57 Hz), 4.00 (t, 2H, J = 6.26 Hz), 5.50 (s, 2H), 6.10 (s, 1H), 7.30 (s, 1H).

Anal. Calcd for C₁₈H₄₀N₂O₄: C, 63.88; H, 8.93; N, 8.28. Found: C, 64.05; H, 9.05; N, 8.32

6-Butoxy-7-(2-diethylaminoethoxy)-3H-quinazolin-4-one (13).- Similarly to the procedure described for **6**, the title compound was prepared starting from **12** (0.89 g, 0.0026 mol), as a white solid (0.53 g, 60%), mp: 154-157°C. IR: 1689 (CO), 1609 (NH) cm⁻¹. ¹H NMR: (CDCl₃): δ 0.95 (t, 3H, J = 7.20 Hz), 1.06 (t, 6H, J = 7.00 Hz), 1.45 (m, 2H), 1.80 (m, 2H), 2.64 (q, 4H, J = 7.18 Hz), 2.96 (t, 2H, J = 6.11 Hz), 4.08 (t, 2H, J = 6.46 Hz), 4.17 (t, 2H, J = 6.11 Hz), 7.11 (s, 1H), 7.54 (s, 1H), 8.01 (s, 1H).

Anal. Calcd for C₁₈H₂₇N₃O₃: C, 64.84; H, 8.16; N, 12.60. Found: C, 64.68; H, 8.22; N, 12.35

REFERENCES

- A. Vema, S. K. Panigrahi, G. Rambabu, B. Gopalakrishnan, J. A R. P. Sarma and G. R. Desiraju, *Bioorg. Med. Chem.*, 11, 4643 (2003).
- K. Matsuno, J. Ushiki, T. Seishi, M. Ichimura, N. A. Giese, J. C. Yu, S. Takahashi, S. Oda and Y. Nomoto, J. Med. Chem., 46, 4910 (2003).
- 3. P. Angibaud, X. Bourdrez, D.W. End, E. Freyne, M. Janicot, P. Lezouret, Y. Ligny, G.

Downloaded At: 19:00 26 January 2011

Mannens, S. Damsch, L. Mevellec, C. Meyer, P. Muller, I. Pilatte, V. Poncelet, B. Roux, G. Smets, J. Van Dun, P. Van Remoortere, M. Venet and W. Wouters, *Bioorg. Med. Chem. Lett.*, **13**, 4365 (2003).

- 4. M. Tobe, Y. Isobe, H. Tomizawa, T. Nagasaki, H. Takahashi and H. Hayashi, *Bioorg. Med. Chem.*, 11, 3869 (2003).
- 5. G. Cravotto, S. Chimichi, B. Robaldo and M. Boccalini, Tetrahedron Lett., 44, 8383 (2003).
- 6. A. Hassner and V. Alexanian, Tetrahedron Lett., 19, 4475 (1978).
- 7. B. Abribat and Y. Le Bigot, Tetrahedron, 53, 2119 (1997).
- 8. P. Berdague, F. Perez, J. Courtieu and J. P. Bayle, Bull. Soc. Chim. Fr., 130, 475 (1993).
- 9. K. N. Gurudutt and T. R. Seshadri, Phytochemistry, 13, 2845 (1974).
- D. N. A. Fox, S. J. Mantell and A. J. Collis, *Eur. Patent*, 0 887344 A1 (1998); *Chem. Abstr*. 1999, 130, 81523a (1999).
- 11. J. P. Hénichart, J. L. Bernier, C. Vaccher, R. Houssin and V. Warin, *Tetrahedron*, **36**, 3535 (1980).
- 12. D. R. Paritosch, K. A. Kaipenchery and D. Rajagopal, J. Org. Chem., 65, 1207 (2000).
- 13. P. Laszlo and P. Pennetreau, J. Org. Chem, 52, 2407 (1987).
- S. C. Wilson, P. W. Howard, S. M. Forrow, J. A. Hartley, L. J. Adams, T. C.Jenkins, L. R. Kelland and D. E. Thurston, J. Med. Chem., 42, 4028 (1999).
- D. E. Thurston, D. S. Bose, A. S. Thompson, P. W. Howard, A. Leoni, S. J Croker, T. C. Jenkins, S. Neidle, J. A. Hartley and L. H. Hurley, J. Org. Chem., 61, 8141 (1996).
- M. Robba, J. M. Leconte and M. Cugnon De Sevricourt, Bull. Soc. Chim. Fr., 10, 3630 (1970).

(Received May 18, 2004; in final form September 11, 2004)